A note on isosceles planar graph drawing
نویسنده
چکیده
We show that there exist triangulations that do not admit any planar straight-line drawing in which every face is an isosceles triangle, thus partially solving a question posed in [Demaine, Mitchell, O’Rourke – The Open Problems Project ].
منابع مشابه
A Note on a graph associated to a commutative ring
The rings considered in this article are commutative with identity. This article is motivated by the work on comaximal graphs of rings. In this article, with any ring $R$, we associate an undirected graph denoted by $G(R)$, whose vertex set is the set of all elements of $R$ and distinct vertices $x,y$ are joined by an edge in $G(R)$ if and only if $Rxcap Ry = Rxy$. In Section 2 of this articl...
متن کاملA Note on Minimum-Segment Drawings of Planar Graphs
A straight-line drawing of a planar graph G is a planar drawing of G, where each vertex is mapped to a point on the Euclidean plane and each edge is drawn as a straight line segment. A segment in a straight-line drawing is a maximal set of edges that form a straight line segment. A minimum-segment drawing of G is a straightline drawing of G, where the number of segments is the minimum among all...
متن کاملOn the M-polynomial of planar chemical graphs
Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...
متن کاملTransforming planar graph drawings while maintaining height
There are numerous styles of planar graph drawings, notably straight-line drawings, poly-line drawings, orthogonal graph drawings and visibility representations. In this note, we show that many of these drawings can be transformed from one style to another without changing the height of the drawing. We then give some applications of these transformations.
متن کاملA note on 1-planar graphs
A graph is 1-planar if it can be drawn in the plane such that each of its edges is crossed at most once. We prove a conjecture of Czap and Hudák [6] stating that the edge set of every 1-planar graph can be decomposed into a planar graph and a forest. We also provide simple proofs for the following recent results: (i) an n-vertex graph that admits a 1-planar drawing with straight-line edges has ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Process. Lett.
دوره 110 شماره
صفحات -
تاریخ انتشار 2010